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ramethyl berninamycinate hydrate is by cleavage of the thi-
azole ring system. In view of the pyridine ring the likely site 
of hydrolytic cleavage of the thiazole ring system in 1 is the 
S-C(IOb) bond. Thus, structure 2 is assigned for tetra-
methyl berninamycinate hydrate. 
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Selenium Dioxide Oxidation of Ketones and Aldehydes. 
Evidence for the Intermediacy of /?-Ketoseleninic Acids 

Sir: 

Olefins, ketones, and aldehydes are the three organic 
functional groups most often subjected to oxidation by sele
nium dioxide. We previously established that olefin oxida
tions proceed via allylseleninic acids,1 and we now present 
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evidence that the selenium dioxide oxidation of ketones and 
aldehydes to a-diketones and glyoxals also involves an orga-
noselenium species. 

Our mechanism (Scheme I) proposes that the key inter
mediate in this sequence is the /?-ketoseleninic acid 5 
formed by electrophilic attack of selenous acid, 3, on the 
enol I;2 Pummerer-like3 decomposition yields the a-dike-
tone 9. For comparison, Scheme I also includes the mecha
nism proposed by Corey and Schaefer4 which is widely ac
cepted at this time, but does not involve an organoselenium 
intermediate. Ample precedent exists for the formation of 
carbon-selenium bonds during selenium dioxide oxida
tions,5 and, in several cases, the putative /3-ketoseleninic 
acid intermediate appears to have been trapped by a second 
molecule of the substrate.5d_f 

Our principal objection to the mechanism of Corey and 
Schaefer arises from our observation13 that selenium II es
ters such as 7 hydrolyze very rapidly to alcohols (10). Fur
thermore, in their kinetic study of the oxidation of deoxy-
benzoin, Corey and Schaefer explicitly excluded the inter
mediacy of such a ketol on the basis that oxidation of ben
zoin to benzil proceeds at only one-twentieth the oxidation 
rate of deoxybenzoin. We therefore do not consider 7 to be 
a likely intermediate.6 

To date, we have been unable to isolate a /?-ketoseleninic 
acid (5). We have sought instead to generate this species in 
situ by the oxidation of a,a'-diketodiselenides7a and observe 
the resulting organic products. To eliminate the possibility 
that /3-ketoseleninic acids thus formed might revert to selen
ous acid and ketone which could conceivably afford dike-
tone by some alternate mechanism, we synthesized the two 
isomeric a,a'-diketodiselenides 16 and 17.8 As indicated in 
Table I, ozonolysis at 25° of each isomer afforded the cor
responding a-diketone only (16 —• 11 and 17 —• 12);9 care
ful GLPC analysis10 revealed no crossover products. We 
submit this as evidence that the carbon-selenium bond re
mains intact until the Pummerer rearrangement effects oxi
dation of the a-carbon, and we propose the selenine 8 as a 
likely intermediate. Selenines have not yet been character
ized, but Barton11 has demonstrated that oxidation of di-
/ert-butyl selenoketone gives the corresponding ketone, pre
sumably via a selenine intermediate, and Strating12 has re
ported that the analogous sulfine groups readily hydrolyze 
to ketones. 

Although the yields of a-diketones are low (Table I) for 
the ozonolysis of 16 and 17, selenium dioxide oxidation of 
the parent ketone, 3-octanone, in hot 70% acetic acid gave 
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Table 1 

Products, % yield0 

Substrate 
Oxi
dant 

2,3-
Octane-
dione 

11 

3,4-
Octane-
dione 

12 

1-Octen- 4-Octen-
3-one 3-one 

13 14 

3-Octanone, 15 SeO2* 10.5C 3.5e Trace Trace 
O 

Od 34 <0.6 
0 2 0 

Se), 
16 

Se)2 

03<* <0.6 28 
H 2 O / 0 1 

a Yields determined by GLPC using an internal standard; see ref 9. 
b 70% HOAc, 100°, 4 h. c Isolated yield. <* EtOAc, 25°, 30 min; 
lower yields were obtained in CCl4 at 0°.7 e THF, 65°, 5 min. 

Scheme II 
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19 + HOAc 

only a 14% isolated yield of a 3:1 mixture of the diketones 
H a n d 12. 

In addition to this evidence for the Pummerer-like rear
rangement of/3-ketoseleninic acids, we have observed13 sev
eral examples of Pummerer products from alkyl phenyl sel-
enoxides similar to those reported by Okamoto'4 a and 
Reich. I4b 

Investigations of alkyl phenyl selenoxide eliminations 
have demonstrated that this process proceeds via syn elimi
nation,15 and we believe that analogous decomposition of 
/3-ketoseleninic acids explains the formation of dehydrogen-
ated products frequently observed as by-products of seleni
um dioxide oxidations of carbonyl compounds. Indeed, 
treatment of each a,a'-diketodiselenide with hydrogen per
oxide715 afforded both the a-diketone and the ^ - u n s a t u 
rated ketone (Table I ) ; ' 6 again, no crossover products were 
detected.10 These observations support our mechanism for 
the reaction of 5 to give both 6 and 9. 

Finally, the /3-ketoseleninic acid intermediate suggests a 
reasonable mechanism for the unusual oxidative rearrange
ment observed during selenium dioxide oxidations of ke
tones in the presence of hydrogen peroxide.17 Scheme II 
demonstrates this mechanism for cyclic ketones which af
ford ring-contracted acids such as 19. Intermediate 18 
bears a noteworthy resemblance to that (21) proposed for 
the remarkably similar process involving 2-acetylcyclohexa-
none (20) and hydrogen peroxide.18 
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